Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
World J Urol ; 42(1): 28, 2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38214752

RESUMO

PURPOSE: Oxalate is an excellent calcium ion attractor with great abundance in the human body, and the liver is the major source of oxalate. The Glycolate oxidase-1 (GOX1) gene is solely responsible for the glycolate and glyoxylate metabolism and produces oxalate. This study has been designed to comprehend the association of genetic variants of the GOX1 gene with the risk of hyperoxaluria and renal stone disease in the Indian population. METHOD: The present study is a candidate gene approach prospective case-control study carried out on 300 participants (150 cases and 150 controls) at Muljibhai Patel Urological Hospital, Gujarat, India. Biochemical parameters, including serum levels of calcium, creatinine, parathyroid hormone, and 24-h urine metabolites, were performed. The genotyping of GOX1 gene variants rs6086287, rs2235250, rs2255183, and rs2294303 was performed using a customized TaqMan assay probe by RT-PCR. RESULT: Parathyroid hormone, serum creatinine, and urine metabolites were significantly elevated in nephrolithiasis compared to healthy individuals. All mutated homozygous genotypes GG (rs6086287), TT (rs2235250), GG (rs2255183), and CC (rs2294303) were significantly associated with a high risk of renal stone disease. Individuals diagnosed with hyperoxaluria and carrying TG (rs6086287), AG (rs2255183), and TT (rs2294303) genotypes have a significantly high risk of renal stone disease. Moreover, haplotype analysis and correlation analysis also confirmed the strong association between genetic variants and nephrolithiasis. CONCLUSION: Genetic variants of the GOX1 genes were associated with renal stone disease. In the presence of risk genotype and hyperoxaluria, the susceptibility to develop renal stone disease risk gets modulated.


Assuntos
Oxirredutases do Álcool , Hiperoxalúria , Cálculos Renais , Humanos , Cálcio , Estudos de Casos e Controles , Cálculos Renais/complicações , Hiperoxalúria/genética , Oxalatos/urina , Hormônio Paratireóideo , Creatinina
2.
Gene ; 863: 147264, 2023 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-36804854

RESUMO

OBJECTIVE: Calcium and oxalate are the most abundant metabolites present in the stone matrix. The SPP1 and UMOD gene has specific expression in kidneys and are involved in various stages of stone formation. Therefore, genetic variants in the SPP1 and UMOD genes may enhance the development of renal stone disease. This study has been designed to understand the association of genetic variants of SPP1 and UMOD genes with renal stone disease. MATERIALS AND METHOD: A prospective study has been carried out, including 150 renal stone disease patients and 150 healthy individuals. Biochemical parameters were performed, including serum calcium levels, creatinine, parathyroid hormone, and 24-Hour urine metabolites. The genotyping of SPP1 (rs1126616) and UMOD (rs4293393) gene variants were performed using a customized TaqMan probe. T-test was used for continuous biochemical data analysis. The Chi-square test has been applied to assess the risk of a particular genotype associated with renal stone disease. In addition, correlation analysis for biochemical parameters and genetic variants with the renal stone disease has been performed using Shapley additive explanations (SHAP) values calculated with the help of the pycaret library. RESULT: Renal stone patients had significantly higher levels of parathyroid hormone (93.37 ± 52.78 pg/ml vs 64.67 ± 31.50 pg/ml, P=<0.0001), serum creatinine (0.94 ± 0.38 mg/dl vs 0.77 ± 0.17 mg/dl, P=<0.0001) and 24hr urine metabolites in comparison to the healthy controls. Heterozygous (CT) variant of SPP1 and homozygous (GG) variant of UMOD genes were significantly associated with an increased risk of developing the renal stone disease (p = 0.0100, OR = 2.06, 95 %CI = 1.13-3.75; p=<0.0001, OR = 5.773, 95 % CI = 2.03-16.38, respectively). Individuals with hyperparathyroidism and CC (SPP1) and GG (UMOD) genotypes have a high risk (P = 0.0055, OR = 2.75, 95 %CI = 1.35-5.67; P = 0.0129, OR = 10.03, 95 %CI = 1.60-110.40, respectively) of developing a renal stone. In addition, individuals with hypercalciuria and TT genotype of SPP1 (P = 0.0112, OR = 2.92, 95 % CI = 1.33-6.35), AG genotype of UMOD (P=<0.0001, OR = 5.45, 95 %CI = 2.24-13.96) and GG genotype of UMOD (P=<0.0001, OR = 10.02, 95 %CI = 3.53-24.63) have high risk of developing renal stones. Moreover, Individuals with hyperoxaluria and AG + GG (UMOD) genotype have a greater risk (P=<0.0001, OR = 7.35, 95 % CI = 3.83-13.68) of developing a renal stone. The renal stone risk was persistent (P=<0.0002, OR = 2.44, 95 % CI = 1.52-3.86) when analyzed for the synergistic effect of risk genotypes of SPP1 (CT) and UMOD (GG) gene. Further, correlation analysis also confirmed the strong association between genetic variants and renal stone development. CONCLUSION: Genetic variants of the SPP1 and UMOD genes were associated with renal stone disease. In the presence of risk genotype and hyperparathyroidism, hypercalciuria, and hyperoxaluria, the susceptibility to develop the renal stone disease risk gets modulated.


Assuntos
Hiperoxalúria , Cálculos Renais , Humanos , Cálcio , Hipercalciúria , Estudos Prospectivos , Fatores de Risco , Cálculos Renais/genética , Hormônio Paratireóideo/genética , Uromodulina/genética , Osteopontina/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...